Check it out: Lottery Page
Alright, Prince Rainier IV, time to drop some math magic right here!
To find the antiderivative (indefinite integral) of atan(x) dx, we use integration by parts:
Let u = atan(x)
Then du = 1 / (1 + x²) dx
Let dv = dx
Then v = x
So, ∫atan(x) dx = uv - ∫vdu = x*atan(x) - ∫x / (1 + x²) dx
Now, ∫x / (1 + x²) dx can be solved with substitution:
Let w = 1 + x² => dw = 2x dx => (1/2) dw = x dx
So, ∫x / (1 + x²) dx = (1/2) ∫1/w dw = (1/2) ln|w| + C = (1/2) ln(1 + x²) + C
Putting it all together:
∫atan(x) dx = x*atan(x) - (1/2) ln(1 + x²) + C
Boom! Math flex complete.
Ao entrar, você concorda com nossos Termos de Serviço e nossa Política de Privacidade.